- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arnold, Kenneth E. (1)
-
Batalha, Natasha E. (1)
-
Bean, Jacob L. (1)
-
Bender, Chad F. (1)
-
Boss, Alan (1)
-
Cañas, Caleb I. (1)
-
Chambers, John (1)
-
Cochran, William D. (1)
-
Diddams, Scott A. (1)
-
Gao, Peter (1)
-
Gupta, Arvind F. (1)
-
Halverson, Samuel (1)
-
Hawley, Suzanne (1)
-
Kanodia, Shubham (1)
-
Kempton, Eliza M.-R. (1)
-
Kobulnicky, Henry A. (1)
-
Libby-Roberts, Jessica (1)
-
Lin, Andrea S. J. (1)
-
Mahadevan, Suvrath (1)
-
Malsky, Isaac (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The near-infrared transmission spectrum of the warm sub-Neptune exoplanet GJ 1214 b has been observed to be flat and featureless, implying a high metallicity atmosphere with abundant aerosols. Recent JWST MIRI Low Resolution Spectrometer observations of a phase curve of GJ 1214 b showed that its transmission spectrum is flat out into the mid-infrared. In this paper, we use the combined near- and mid-infrared transmission spectrum of GJ 1214 b to constrain its atmospheric composition and aerosol properties. We generate a grid of photochemical haze models using an aerosol microphysics code for a number of background atmospheres spanning metallicities from 100 to 1000× solar, as well as a steam atmosphere scenario. The flatness of the combined data set largely rules out atmospheric metallicities ≤300× solar due to their large corresponding molecular feature amplitudes, preferring values ≥1000× solar and column haze production rates ≥10 −10 g cm −2 s −1 . The steam atmosphere scenario with similarly high haze production rates also exhibits sufficiently small molecular features to be consistent with the transmission spectrum. These compositions imply that atmospheric mean molecular weights ≥15 g mol −1 are needed to fit the data. Our results suggest that haze production is highly efficient on GJ 1214 b and could involve non-hydrocarbon, non-nitrogen haze precursors. Further characterization of GJ 1214 b’s atmosphere would likely require multiple transits and eclipses using JWST across the near- and mid-infrared, potentially complemented by ground-based high-resolution transmission spectroscopy.more » « less
-
Kanodia, Shubham; Mahadevan, Suvrath; Libby-Roberts, Jessica; Stefansson, Gudmundur; Cañas, Caleb I.; Piette, Anjali A. A.; Boss, Alan; Teske, Johanna; Chambers, John; Zeimann, Greg; et al (, The Astronomical Journal)Abstract We present the discovery of TOI-5205b, a transiting Jovian planet orbiting a solar metallicity M4V star, which was discovered using Transiting Exoplanet Survey Satellite photometry and then confirmed using a combination of precise radial velocities, ground-based photometry, spectra, and speckle imaging. TOI-5205b has one of the highest mass ratios for M-dwarf planets, with a mass ratio of almost 0.3%, as it orbits a host star that is just 0.392 ± 0.015M⊙. Its planetary radius is 1.03 ± 0.03RJ, while the mass is 1.08 ± 0.06MJ. Additionally, the large size of the planet orbiting a small star results in a transit depth of ∼7%, making it one of the deepest transits of a confirmed exoplanet orbiting a main-sequence star. The large transit depth makes TOI-5205b a compelling target to probe its atmospheric properties, as a means of tracing the potential formation pathways. While there have been radial-velocity-only discoveries of giant planets around mid-M dwarfs, this is the first transiting Jupiter with a mass measurement discovered around such a low-mass host star. The high mass of TOI-5205b stretches conventional theories of planet formation and disk scaling relations that cannot easily recreate the conditions required to form such planets.more » « less
An official website of the United States government
